Functional Response (FR) and Relative Growth Rate (RGR) Do Not Show the Known Invasiveness of Lemna minuta (Kunth)
نویسندگان
چکیده
Growing travel and trade threatens biodiversity as it increases the rate of biological invasions globally, either by accidental or intentional introduction. Therefore, avoiding these impacts by forecasting invasions and impeding further spread is of utmost importance. In this study, three forecasting approaches were tested and combined to predict the invasive behaviour of the alien macrophyte Lemna minuta in comparison with the native Lemna minor: the functional response (FR) and relative growth rate (RGR), supplemented with a combined biomass-based nutrient removal (BBNR). Based on the idea that widespread invasive species are more successful competitors than local, native species, a higher FR and RGR were expected for the invasive compared to the native species. Five different nutrient concentrations were tested, ranging from low (4 mgN.L-1 and 1 mgP.L-1) to high (70 mgN.L-1 and 21 mgP.L-1). After four days, a significant amount of nutrients was removed by both Lemna spp., though significant differences among L. minor and L. minuta were only observed at lower nutrient concentrations (lower than 17 mgN.L-1 and 6 mgP.L-1) with higher nutrient removal exerted by L. minor. The derived FR did not show a clear dominance of the invasive L. minuta, contradicting field observations. Similarly, the RGR ranged from 0.4 to 0.6 d-1, but did not show a biomass-based dominance of L. minuta (0.5 ± 0.1 d-1 versus 0.63 ± 0.09 d-1 for L. minor). BBNR showed similar results as the FR. Contrary to our expectations, all three approaches resulted in higher values for L. minor. Consequently, based on our results FR is sensitive to differences, though contradicted the expectations, while RGR and BBNR do not provide sufficient power to differentiate between a native and an invasive alien macrophyte and should be supplemented with additional ecosystem-based experiments to determine the invasion impact.
منابع مشابه
پاسخ پایههای درختان پسته بادامی زرند، سرخس و قزوینی به زیادی بر و سدیم کلراید در آب آبیاری
To determine the effects of salinity and boron excess in irrigation water on relative growth rate (RGR), net assimilation rate on a leaf weight basis (NAR), and leaf weight ratio (LWR) of pistachio, three pistachio rootstocks (Badami -Zarand, Sarakhs and Ghazvini) were used. Rootstocks were grown in soil in eight-liter polyethylene pots. Sodium chloride treatments were 0, 75,150 and 225 mM NaCl...
متن کاملپاسخ پایههای درختان پسته بادامی زرند، سرخس و قزوینی به زیادی بر و سدیم کلراید در آب آبیاری
To determine the effects of salinity and boron excess in irrigation water on relative growth rate (RGR), net assimilation rate on a leaf weight basis (NAR), and leaf weight ratio (LWR) of pistachio, three pistachio rootstocks (Badami -Zarand, Sarakhs and Ghazvini) were used. Rootstocks were grown in soil in eight-liter polyethylene pots. Sodium chloride treatments were 0, 75,150 and 225 mM NaCl...
متن کاملVariation in growth rate and ecophysiology among 34 grassland and savanna species under contrasting N supply: a test of functional group differences
• We tested the hypothesis that biological trait-based plant functional groups provide sufficient differentiation of species to enable generalization about a variety of plant ecophysiological traits or responses to nitrogen (N). • Seedlings of 34 North American grassland and savanna species, representing 5 functional groups, were grown in a glasshouse in an infertile soil with or without N fert...
متن کاملPlant growth analysis: towards a synthesis of the classical and the functional approach
A method of calculating relative growth rates (RGR) and net assimilation rates is presented. The method is based on the fitting of a polynomial through the relative growth rate values calculated by the 'classical' approach rather than through the ln-transformed plant weights as in the 'functional' method. Additional ways of reducing the harvest-to-harvest variation characteristic of the classic...
متن کاملRelative growth rate variation of evergreen and deciduous savanna tree species is driven by different traits.
BACKGROUND AND AIMS Plant relative growth rate (RGR) depends on biomass allocation to leaves (leaf mass fraction, LMF), efficient construction of leaf surface area (specific leaf area, SLA) and biomass growth per unit leaf area (net assimilation rate, NAR). Functional groups of species may differ in any of these traits, potentially resulting in (1) differences in mean RGR of groups, and (2) dif...
متن کامل